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Searching for new physics                       
with single and double beta decay 

Vincenzo Cirigliano
Los Alamos National Laboratory

LANL P/T Colloquium,  August 20 2020
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• The quest for new physics:  Energy and Precision Frontiers 

• Two Precision Frontier probes with strong LANL involvement:  

• Precision β decay measurements

• Neutrinoless ββ decay   
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The quest for new 
physics
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New physics: why?
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X

No Baryonic Matter,  no Dark Matter,  no Dark Energy,  no Neutrino Mass
What stabilizes GFermi/GNewton against radiative corrections?                          

Do forces unify at high E?  What is the origin of families?
…

Addressing these puzzles likely requires new degrees of freedom

Dark Matter 
(gravitational lensing)

Hot gas 
(X rays) 
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1/Coupling 

M

vEW

Unexplored

• Where is the new physics? Is it Heavy? Is it Light & weakly coupled?

New physics: where?

~ 250 GeV

(mproton ~ 1 GeV) 

Standard 
Model
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1/Coupling 

M

vEW

Energy Frontier
(direct access to UV d.o.f)

• Two approaches 

New physics: how?

• Where is the new physics? Is it Heavy? Is it Light & weakly coupled?
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• Two approaches 

1/Coupling 

M

vEW

Precision Frontier
(indirect access to UV d.o.f)
(direct access to light d.o.f.)

A’

New physics: how?

Often requires use of powerful 
particle accelerators (hence also  

“Intensity Frontier”) 

• Where is the new physics? Is it Heavy? Is it Light & weakly coupled?
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1/Coupling 

M

vEW

Energy Frontier
(direct access to UV d.o.f)

Precision Frontier
(indirect access to UV d.o.f)
(direct access to light d.o.f.)

• Two approaches,  both needed to reconstruct BSM dynamics:  
structure, symmetries, and parameters of LBSM 

- EWSB mechanism
- Direct access to heavy particles 
- ... 

New physics: how?

- L and B non conservation 
- CP violation  (w/o flavor)
- Flavor violation: quarks,  leptons
- Multi-TeV scale interactions 
- Neutrino properties 
- Dark sectors
- …

• Where is the new physics? Is it Heavy? Is it Light & weakly coupled?
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LANL NP & HEP programs
play a prominent role at the Precision Frontier

- EWSB mechanism
- Direct access to heavy particles 
- ... 

1/Coupling 

M

vEW

Energy Frontier
(direct access to UV d.o.f)

Precision Frontier
(indirect access to UV d.o.f)
(direct access to light d.o.f.)

- L and B non conservation  
- CP violation  (w/o flavor)
- Flavor violation: quarks,  leptons
- Multi-TeV scale interactions
- Neutrino properties 
- Dark sectors
- …

New physics: how?

• Where is the new physics? Is it Heavy? Is it Light & weakly coupled?
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I will discuss β and ββ decays as probes of                          
BSM weak interactions and L# non-conservation, respectively 

- EWSB mechanism
- Direct access to heavy particles 
- ... 

1/Coupling 

M

vEW

Energy Frontier
(direct access to UV d.o.f)

Precision Frontier
(indirect access to UV d.o.f)
(direct access to light d.o.f.)

- L and B non conservation 
- CP violation  (w/o flavor)
- Flavor violation: quarks,  leptons
- Multi-TeV scale interactions 
- Neutrino properties 
- Dark sectors
- …

New physics: how?

• Where is the new physics? Is it Heavy? Is it Light & weakly coupled?



Beta decays as a probe of 
new physics

Up quark 

W boson

Down quark

Up quark 

W boson

New virtual 
particle Down quark
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• Beta decays have played a central role in the development of the SM 

• Nowadays: tool to challenge the SM & probe possible new physics

Beta decays in the SM and beyond
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1/Λ2 1/Λ2 

• In the SM,  W exchange  ⇒  V-A currents,  universality

dj

ui

dj

uig Vij

g

dj

uiεL,R   εS,P,T   

 GF(β) ~ g2Vij/Mw2 ~ GF(μ) Vij  ~1/v2 Vij

Beta decays in the SM and beyond

Cabibbo-Kobayashi-Maskawa
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1/Λ2 1/Λ2 

• In the SM,  W exchange  ⇒  V-A currents,  universality

dj

ui

dj

uig Vij

g

dj

uiεL,R   εS,P,T   

 GF(β) ~ g2Vij/Mw2 ~ GF(μ) Vij  ~1/v2 Vij

Beta decays in the SM and beyond

WR, H+,  
leptoquarks,  Z’, 

SUSY,…
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1/Λ2 1/Λ2 

• In the SM,  W exchange  ⇒  V-A currents,  universality

dj

ui

dj

uig Vij

g

dj

uiεL,R   εS,P,T   

 GF(β) ~ g2Vij/Mw2 ~ GF(μ) Vij  ~1/v2 Vij

Beta decays in the SM and beyond

Ten effective couplings

E << Λ εΓ ~ εΓ ~ (v/Λ)2   ~
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1.  Differential decay distribution (mostly sensitive to εS,T)

How do we probe the εα?  (1)

Lee-Yang, 1956      Jackson-Treiman-Wyld 1957
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1.  Differential decay distribution (mostly sensitive to εS,T)

How do we probe the εα?  (1)

Lee-Yang, 1956      Jackson-Treiman-Wyld 1957

14

 b (gSεS,  gTεT):                                                 
distortion of beta spectrum  
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1.  Differential decay distribution (mostly sensitive to εS,T)

How do we probe the εα?  (1)

Lee-Yang, 1956      Jackson-Treiman-Wyld 1957

A ~ -1
C-S Wu

14



1.  Differential decay distribution (mostly sensitive to εS,T)

a(gA),   A(gA) ,  B(gA, gαεα), …                                                  
isolated via suitable experimental 

asymmetries  

How do we probe the εα?  (1)

Lee-Yang, 1956      Jackson-Treiman-Wyld 1957
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1.  Differential decay distribution (mostly sensitive to εS,T)

Theory input:    nucleon charges  gA,S,T                                                         
Great progress in lattice QCD,  spearheaded by LANL theory group 

a(gA),   A(gA) ,  B(gA, gαεα), …                                                  
isolated via suitable experimental 

asymmetries  

How do we probe the εα?  (1)

Lee-Yang, 1956      Jackson-Treiman-Wyld 1957
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• Remove all systematics 
by performing calculation 
on many little universes 
with different mq,  a,  L

• Discretize space-time into a finite Euclidean lattice (a,V) →   
perform Monte Carlo integration of the path integral   

L

a

Nucleon charges from lattice QCD

Gupta et al., 1806.09006
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Oi
q 

n n 
× 

Isolate the neutron e-Mnτ Project on the neutron e-Mnτ 

d

u
d

d

u
d
u

u
n p

the proton

[Gluons not depicted]



Nucleon charges from lattice QCD

World averages 
dominated by 
LANL results

FLAG review 
1902.08191

~10% ~5%

1-2%
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Gonzalez-Alonso, 
Naviliat-Cuncic, 

Severijns, 1803.08732 

Current low-E data:
dominated by           

b(0+→ 0+),   A(n)

Sensitivity to εS and εT

LHC:  pp →  e ν + X n → p e ν 
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Gonzalez-Alonso, 
Naviliat-Cuncic, 

Severijns, 1803.08732 

Current low-E data:
dominated by           

b(0+→ 0+),   A(n)

εS,T  @  μ= 2 GeV (MS-bar) 

CURRENT
εS,T  @  μ= 2 GeV (MS-bar) 

LHC 36fb-1     
@ 13 TeV

 Bhattacharya et al 
1806.09006

Sensitivity to εS and εT

LHC:  pp →  e ν + X n → p e ν 

18

 gS =1.01(10)
gT =0.99(4)



Gonzalez-Alonso, 
Naviliat-Cuncic, 

Severijns, 1803.08732 

Current low-E data:
dominated by           

b(0+→ 0+),   A(n)

Sensitivity to εS and εT

εS,T  @  μ= 2 GeV (MS-bar) 

FUTURE

b (n) @ 0.001

b (6He) @ 0.001

Prospective beta decay 
measurements 
competitive with strong 
LHC constraints, probing 
ΛS,T  ~10 TeV

Note:   ≲10% uncertainty 
on gS,T is essential to 
achieve competitiveness  

LHC 36fb-1     
@ 13 TeV

 Bhattacharya et al 
1806.09006

dΓ ~ Γ0 (1+  b me /Ee) 
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 gS =1.01(10)
gT =0.99(4)



quark
gluon

How do we probe the εα?  (2)

19

2.  Total decay rates (mostly εL,R)



quark
gluon

Experimental input
Lifetimes, 

BRs
Q-values →
phase space

How do we probe the εα?  (2)

19

2.  Total decay rates (mostly εL,R)



quark
gluon

How do we probe the εα?  (2)

Theory input

Hadronic / nuclear
 matrix elements 

and radiative corrections 

LQCD,  chiral EFT,  
dispersion relations 
+ expt.  input (gA)

19

2.  Total decay rates (mostly εL,R)



quark
gluon

How do we probe the εα?  (2)

Channel-dependent 
effective CKM element 

~_

19

2.  Total decay rates (mostly εL,R)



CKM unitarity test

20



CKM unitarity test

• Used radiative corrections from Seng 
et al,1807.10197.   Discrepancy goes  
from 5σ → 3σ if use Czarnecki et al, 
1907.06737  → Importance of model-
independent treatments of radiative 
corrections, in all decay channels     
(requires EFT + lattice QCD).

• Theory analysis of nuclear decays at 
0.015% level currently suffers from 
nuclear structure uncertainties:      
neutron will be the arbiter 

• Discrepancy could be explained in 
terms of εR(s) (~0.4%), and εR (~0.1%)

20



• Vud  from neutron decay currently at 0.06%

• Independent extraction of  Vud @ 0.015%,  
via neutron decay requires:

   δτn ~ 0.7s  → 0.3s → 0.1s 

       δgA/gA ~0.044%→ 0.02 %         

@ LANL UCNτ → UCNτ+

@ LANL UCNA+ → PERC

Impact of neutron measurements

21



Impact of LANL

• New LDRD investment: 

• δτn → 0.1s

• δgA/gA → 0.03%     

• Rad. Corr.: LQCD + EFT    

• UCNτ result is the world’s 
most precise (Science, 2018) 

22



LEP, SLC

S. Alioli,  VC,  W. Dekens, J. de Vries, E. Mereghetti  1703.04751 

ΔCKM ∝ εL+εR   

δΓ(π→μν) ∝ εL − εR   
[fπ from LQCD]

Constraint on εR uses          
gA =1.271(13)

(CalLat 1805.12030)   

Neutron decay: 
λ = gA (1 − 2 εR)

Z-pole:
 Falkowski et al 

1706.03783 
 

Associated Higgs 
production at LHC

Sensitivity to εL and εR

Due to weak 
isospin symmetry,  vertex corrections 

involve the Higgs & Z bosons

23
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(Run 2 projection)

εL
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90%CL allowed regions, assumes only two operators at high scale 
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β decays more constraining than collider: probing ΛL,,R  ~20 TeV



•  EFT shows that a discovery window exists well into the LHC era 

• Beta decays play unique role in probing vertex corrections     
εL-εR  (unmatched sensitivity compared to LHC) 

• Beta decays can be competitive in probing scalar and tensor 
interactions if precision reaches < 0.1% (εS-εT plots)

• LANL key player in the international neutron physics scene 

β decays summary

24



Neutrinoless double beta decay 

25



ββ

• For certain even-even nuclei (48Ca, 76Ge,136Xe, …),  single β decay is 
energetically forbidden → ββ decay!

Double beta decay

M. Goppert 
Mayer, 1935

• 2νββ is the rarest process ever observed, with T1/2 ~ 1021 years 
(first observation in 1987)    

26



Neutrinoless double beta decay?

27

• Yes, if neutrinos are Majorana particles (i.e. their own antiparticles)  

E. Majorana, 1937

This is just 
ν(R), which 
mixes with 
ν(L) via mass 

insertion

ν(L)
p

S

ν(R)
p

S

W. H. Furry, 1939



Neutrinoless double beta decay?

27

• Yes, if neutrinos are Majorana particles (i.e. their own antiparticles)  

“Subject to the usual limitations on 
the meaning of such language, one 
can say that a (virtual) neutrino is 

emitted together with one 
of the electrons and reabsorbed 

when the other electron is emitted. ”

mM
ν(L)

ν(R)

W. H. Furry, 1939



Neutrinoless double beta decay?

27

• Yes, if neutrinos are Majorana particles (i.e. their own antiparticles)  

“Subject to the usual limitations on 
the meaning of such language, one 
can say that a (virtual) neutrino is 

emitted together with one 
of the electrons and reabsorbed 

when the other electron is emitted. ”

mM
ν(L)

ν(R)

• Key point: in 0νββ Lepton Number changes by two units.                                   
νM exchange is just one possible mechanism. Furry understood this: 

“The Majorana form of the theory is not the only one that permits this new form of 
disintegration […].   The Majorana theory provides, so to speak, a canonical form.”

W. H. Furry, 1939



Neutrinoless double beta decay?

27

• Yes, if neutrinos are Majorana particles (i.e. their own antiparticles)  

“Subject to the usual limitations on 
the meaning of such language, one 
can say that a (virtual) neutrino is 

emitted together with one 
of the electrons and reabsorbed 

when the other electron is emitted. ”

mM
ν(L)

ν(R)

• Modern viewpoint on LNV:
u

e−

e−

d

d

u

GF

GF

mee

νe

νe

u

e−

e−

d

d

u

but also

Exchange of heavier 
neutrinos or other 

Majorana particles.  At 
low-energy induce six-
fermion operator ~1/Λ5 

W. H. Furry, 1939
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Significance of 0νββ

• Demonstrate that neutrinos are their 
own antiparticles 

• Probe origin of neutrino mass 

• Establish L  non-conservation,  a key 
ingredient to generate the baryon 
asymmetry via leptogenesis 

• B-L conserved in SM → 0νββ = new physics, with far-reaching implications 

Fukujgita-
Yanagida  1987

Shechter-
Valle 1982

Construction of ton-scale 0νββ experiment (T1/2 >1027-28 yr) is the top 
priority for new project starts in the 2015 NSAC Long Range Plan 



• Several experiments worldwide

The quest is on…

2νββ

0νββ

• LANL co-leads 76Ge-based search.   
Majorana Demonstrator → LEGEND  

~50 institutions, ~250 scientists, S. Elliott co-spokesperson

29

T1/2  ~ 1028 yr



The quest is on…

• Connect any source of LNV to 
nuclei:  multi-scale problem!  

• Our approach: use effective field 
theory techniques to bridge scales, 
combined with LQCD and           
nuclear structure

• Challenging experiments and challenging theory! 

T1/2  ~ (mW/Λ)A  (Λχ/mW)B  (kF/Λχ)C

Λχ ~ GeV

kF ~ 100 MeV

30



• Majorana mass generated by exchange of heavy neutrinos, neutral 
under all SM charges (=sterile)

31

High-scale seesaw

x x
MR-1

νL νR νL

MR-1

νR
yy

 y2 vEW2 MR-1 ~ eV

MR →1015 GeV 

νR

νL



• Majorana mass generated by exchange of heavy neutrinos, neutral 
under all SM charges (=sterile)

31

High-scale seesaw

x x
MR-1

νL νR νL

MR-1

νR
yy

mν ~ y2 vEW2 MR-1MR >> vEW

0νββ mediated by light neutrinos



• Majorana mass generated by exchange of heavy neutrinos, neutral 
under all SM charges (=sterile)

31

High-scale seesaw

x x
MR-1

νL νR νL

MR-1

νR
yy  1) CP- and L- violating 

out-of-equilibrium 
decays of heavy  νRi  ⇒ nL

  2) EW sphalerons  ⇒ nB = # nL

Baryogengesis via Leptogenesis

mν ~ y2 vEW2 MR-1MR >> vEW

0νββ mediated by light neutrinos



• In this case 0νββ is a direct probe of ν Majorana mass:  Γ∝|M0ν|2 (mββ)2

32

mlightest2 = ?

NORMAL SPECTRUM INVERTED SPECTRUM

Strong correlation with 
oscillation parameters 

High-scale seesaw: discovery potential



• In this case 0νββ is a direct probe of ν Majorana mass:  Γ∝|M0ν|2 (mββ)2

32

Ton scaleDark bands: 
unknown phases

Light bands:        
uncertainty from  
oscillation 
parameters(90% CL)

running 
expts

Normal SpectrumInverted Spectrum

KamLAND-Zen 2016

Discovery @ ton-scale possible for inverted spectrum or mlightest > 50 meV

Plot by K. Heeger

Assume range for 
nuclear matrix 
elements from 

different many-body 
methods  

High-scale seesaw: discovery potential



•  Steps towards controllable uncertainties in matrix elements:

• Use chiral EFT as guiding principle

• Lattice QCD for hadronic matrix elements (e.g. nn→pp)

• “Ab initio” nuclear structure calculations:                               
from light nuclei (benchmark) to 48Ca and 76Ge 

Engel-Menendez 1610.06548

• Sensitivity to mββ affected 
by large uncertainty in 
“nuclear matrix elements”: 
Γ∝|M0ν|2 (mββ)2

DOE Nuclear Theory Topical Collaboration (PI Jon Engel):  http://c51.lbl.gov/~0nubb/webhome/
33

High-scale seesaw: theory developments



New insights from EFT

• Transition operator to leading order in Q/Λχ   (Q~kF~mπ,  Λχ~GeV)

34

  V. Cirigliano, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, S. Pastore, U. van Kolck 
1802.10097,  Phys.Rev.Lett. 120 (2018)  no.20, 202001 

gν  

νM 

d u

d u

νM 

‘Usual’ νM exchange ~1/Q2 
Coulomb-like potential  

‘New’:  short-range coupling gν ~1/Q2  .
 Required by renormalization of nn→ppee amplitude 

in presence of strong interactions  

νM 

n

n

p

p



Connection with data? 

• NN scattering data determine (C1+C2), but not gν=C1

• Assuming gν~(C1 + C2)/2,  what is the impact on mββ extraction?

35

• Chiral symmetry relates gν to one of two I=2 EM LECs (hard γ’s & ν’s)  



gν contribution sizable in ΔI=2 
transition (due to node):            
for A=12,   AS/AL = 0.75 

A = ∫dr C(r)

ΔI=2 

Evaluate impact in light nuclei using VMC 
wavefunctions from                     

Norfolk chiral potential [1606.06335]

  V.C , W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, S. Pastore,  M. Piarulli, U. van Kolck, R. Wiringa,   
1907.11254

 gν~(C1+C2)/2

36

Impact on nuclear matrix elements
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Transitions of experimental interest (76Ge→ 76Se, … ) have ΔI=2            
(and node)  ⇒  expect significant effect!                                   

Determination of gν is a `decadal’ challenge: analytic methods & lattice QCD

Impact on nuclear matrix elements
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• New contributions can interfere with mββ or add incoherently, 
significantly affecting the interpretation of experimental results

TeV-scale LNV

• TeV sources of LNV may lead to 
observable contributions to 0νββ 
not directly related to the exchange 
of light neutrinos 

• May lead to correlated (or precursor!) signal at LHC:  pp →ee jj 

d

d

u

u

e

e



• Ton-scale 0νββ searches (T1/2 >1027-28 yr) have great discovery 
potential — we simply don’t know the origin of neutrino mass 
and the scale Λ associated with LNV 

• Exciting prospects to improve theory uncertainties thanks to 
synergy of EFT,  lattice QCD,  and nuclear structure  

• LANL co-leads a world wide 76Ge-based experimental search

38

0νββ summary
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Concluding comments

1/Coupling 

M

vEW

• LANL at the forefront of the precision frontier through                                  
experiment,  theory,  high performance computing 

• Illustrated challenges and impact through β and ββ decays

• Precision frontier experiments are 
exploring uncharted territory in our 
search for new physics.  Important 
component of DOE mission (HEP, NP)



Thank you!

A drawing by              
Bruno Touschek 40


